By Topic

FPC: A High-Speed Compressor for Double-Precision Floating-Point Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Burtscher, M. ; Inst. for Comput. Eng. & Sci., Univ. of Texas at Austin, Austin, TX ; Ratanaworabhan, P.

Many scientific programs exchange large quantities of double-precision data between processing nodes and with mass storage devices. Data compression can reduce the number of bytes that need to be transferred and stored. However, data compression is only likely to be employed in high-end computing environments if it does not impede the throughput. This paper describes and evaluates FPC, a fast lossless compression algorithm for linear streams of 64-bit floating-point data. FPC works well on hard-to-compress scientific data sets and meets the throughput demands of high-performance systems. A comparison with five lossless compression schemes, BZIP2, DFCM, FSD, GZIP, and PLMI, on 4 architectures and 13 data sets shows that FPC compresses and decompresses one to two orders of magnitude faster than the other algorithms at the same geometric-mean compression ratio. Moreover, FPC provides a guaranteed throughput as long as the prediction tables fit into the L1 data cache. For example, on a 1.6-GHz Itanium 2 server, the throughput is 670 Mbytes/s regardless of what data are being compressed.

Published in:

Computers, IEEE Transactions on  (Volume:58 ,  Issue: 1 )