By Topic

Gene Association Networks from Microarray Data Using a Regularized Estimation of Partial Correlation Based on PLS Regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tenenhaus, A. ; Lab. d''Exploration Fonctionnelle des Genomes, Inst. de Radiobiologie Cellulaire et Moleculaire (iRCM), Evry, France ; Guillemot, V. ; Gidrol, X. ; Frouin, V.

Reconstruction of gene-gene interactions from large-scale data such as microarrays is a first step toward better understanding the mechanisms at work in the cell. Two main issues have to be managed in such a context: 1) choosing which measures have to be used to distinguish between direct and indirect interactions from high-dimensional microarray data and 2) constructing networks with a low proportion of false-positive edges. We present an efficient methodology for the reconstruction of gene interaction networks in a small-sample-size setting. The strength of independence of any two genes is measured, in such "high-dimensional network," by a regularized estimation of partial correlation based on Partial Least Squares Regression. We finally emphasize specific properties of the proposed method. To assess the sensitivity and specificity of the method, we carried out the reconstruction of networks from simulated data. We also tested PLS-based partial correlation network on static and dynamic real microarray data. An R implementation of the proposed algorithm is available from

Published in:

Computational Biology and Bioinformatics, IEEE/ACM Transactions on  (Volume:7 ,  Issue: 2 )