By Topic

A Finite Difference Delay Modeling Approach to the Discretization of the Time Domain Integral Equations of Electromagnetics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaobo Wang ; Dept. of Electr. & Comput. Eng., Univ. of Delaware, Newark, DE ; Raymond A. Wildman ; Daniel S. Weile ; Peter Monk

A new method for solving the time-domain integral equations of electromagnetic scattering from conductors is introduced. This method, called finite difference delay modeling, appears to be completely stable and accurate when applied to arbitrary structures. The temporal discretization used is based on finite differences. Specifically, based on a mapping from the Laplace domain to the z-transform domain, first- and second-order unconditionally stable methods are derived. Spatial convergence is achieved using the higher-order divergence-conforming vector bases of Graglia et al. Low frequency instability problems are avoided with the loop-tree decomposition approach. Numerical results will illustrate the accuracy and stability of the technique.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:56 ,  Issue: 8 )