By Topic

Efficient Parallelization of the Multilevel Fast Multipole Algorithm for the Solution of Large-Scale Scattering Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ergul, Ozgur ; Dept. of Electr. & Electron. Eng. & the Comput. Electromagn. Res. Center (BiLCEM), Bilkent Univ., Ankara ; Gurel, L.

We present fast and accurate solutions of large-scale scattering problems involving three-dimensional closed conductors with arbitrary shapes using the multilevel fast multipole algorithm (MLFMA). With an efficient parallelization of MLFMA, scattering problems that are discretized with tens of millions of unknowns are easily solved on a cluster of computers. We extensively investigate the parallelization of MLFMA, identify the bottlenecks, and provide remedial procedures to improve the efficiency of the implementations. The accuracy of the solutions is demonstrated on a scattering problem involving a sphere of radius discretized with 41 883 638 unknowns, the largest integral-equation problem solved to date. In addition to canonical problems, we also present the solution of real-life problems involving complicated targets with large dimensions.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:56 ,  Issue: 8 )