Cart (Loading....) | Create Account
Close category search window

Raman-IR micro-thermography tool for reliability and failure analysis of electronic devices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sarua, A. ; H.H. Wills Phys. Lab., Univ. of Bristol, Bristol ; Pomeroy, J. ; Kuball, M. ; Falk, A.
more authors

We report on the development of a integrated Raman - IR thermography technique to probe self-heating in active devices. We compare and discuss advantages of both techniques in terms of spatial resolution on the example of AlGaN/GaN HFET devices. While traditional infra-red (IR) thermography can provide fast overviews of self-heating in the devices over large scales, its use for extraction of channel temperatures is limited by the sub-micron size of the active area in modern devices. Integration with micro-Raman thermography provides not only improvement in spatial resolution down to 0.5 mum on the surface but also unprecedented micron scale depth resolution for true 3D thermography. This enables unique thermal analysis of semiconductor devices on a detailed level not possible before. As it is a generic technique its application can be extended to Si, GaAs and other devices. This opens new opportunities for device performance and reliability optimization, and failure analysis in research and development of modern semiconductor technology, as well as for quality control/ manufacturing environments.

Published in:

Physical and Failure Analysis of Integrated Circuits, 2008. IPFA 2008. 15th International Symposium on the

Date of Conference:

7-11 July 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.