By Topic

Taylor expansion based classifier adaptation: Application to person detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cha Zhang ; Microsoft Res., Redmond, WA ; Hamid, R. ; Zhengyou Zhang

Because of the large variation across different environments, a generic classifier trained on extensive data-sets may perform sub-optimally in a particular test environment. In this paper, we present a general framework for classifier adaptation, which improves an existing generic classifier in the new test environment. Viewing classifier learning as a cost minimization problem, we perform classifier adaptation by combining the cost function on the old data-sets with the cost function on the data-set collected from the new environment. The former term is further approximated with its second order Taylor expansion to reduce the amount of information that needs to be saved for adaptation. Unlike traditional approaches that are often designed for a specific application or classifier, our scheme is applicable to various types of classifiers and user labels. We demonstrate this property on two popular classifiers (logistic regression and boosting), while using two types of user labels (direct labels and similarity labels). Extensive experiments conducted for the task of person detection in conference-room environments show that significant performance improvement can be achieved with our proposed method.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008