By Topic

Global image registration based on learning the prior appearance model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ayman El-Baz ; Bioimaging Lab., Dept. of Bioengineering, University of Louisville, KY, 40292, USA ; Georgy Gimel'farb

A new approach to align an image of a textured object with a given prototype (learned reference object) is proposed. Visual appearance of the images, after equalizing their signals, is modeled with a Markov-Gibbs random field with pairwise interaction. Similarity to the prototype (learned reference object) is measured by a Gibbs energy of signal co-occurrences in a characteristic subset of pixel pairs derived automatically from the prototype. An object is aligned by an affine transformation maximizing the similarity by using an automatic initialization followed by gradient search. To get accurate appearance model, we developed a new approach to automatically select the most important cliques (neighborhood system) that describe the visual appearance of a texture object. Experiments confirm that our approach aligns complex objects better than popular conventional algorithms.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008