Cart (Loading....) | Create Account
Close category search window

Unsupervised learning of human perspective context using ME-DT for efficient human detection in surveillance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Liyuan Li ; Inst. for Infocomm Res., Singapore ; Leung, M.K.H.

A novel and automated technique for learning human perspective context (HPC) from a scene is proposed in this paper. It is found that two models are required to describe HPC for camera tilt angle ranging from 0deg to 50deg. From a scene, the tilt angle can be inferred from the observed human shapes and head/foot positions. Afterward, a novel ME-DT (model estimation - data tuning) algorithm is proposed to learn human perspective context from live data of various degrees of uncertainties. The uncertainties may come from the variations of human individual heights and poses, and segmentation/recognition errors. ME-DT not only estimates the model parameters from the training data but also tunes the data to achieve a better head-foot correlation. The human perspective context provides a feasible constraint on the scales, positions, and orientations of humans in the scene. Applying this constraint to the HOG human detection, great reduction of the detection windows and improved performances have been obtained compared to conventional methods.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.