By Topic

Color constancy beyond bags of pixels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ayan Chakrabarti ; Harvard School of Engineering and Applied Sciences, USA ; Keigo Hirakawa ; Todd Zickler

Estimating the color of a scene illuminant often plays a central role in computational color constancy. While this problem has received significant attention, the methods that exist do not maximally leverage spatial dependencies between pixels. Indeed, most methods treat the observed color (or its spatial derivative) at each pixel independently of its neighbors. We propose an alternative approach to illuminant estimation-one that employs an explicit statistical model to capture the spatial dependencies between pixels induced by the surfaces they observe. The parameters of this model are estimated from a training set of natural images captured under canonical illumination, and for a new image, an appropriate transform is found such that the corrected image best fits our model.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008