By Topic

Transfer learning for image classification with sparse prototype representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

To learn a new visual category from few examples, prior knowledge from unlabeled data as well as previous related categories may be useful. We develop a new method for transfer learning which exploits available unlabeled data and an arbitrary kernel function; we form a representation based on kernel distances to a large set of unlabeled data points. To transfer knowledge from previous related problems we observe that a category might be learnable using only a small subset of reference prototypes. Related problems may share a significant number of relevant prototypes; we find such a concise representation by performing a joint loss minimization over the training sets of related problems with a shared regularization penalty that minimizes the total number of prototypes involved in the approximation. This optimization problem can be formulated as a linear program that can be solved efficiently. We conduct experiments on a news-topic prediction task where the goal is to predict whether an image belongs to a particular news topic. Our results show that when only few examples are available for training a target topic, leveraging knowledge learnt from other topics can significantly improve performance.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008