By Topic

Viewpoint-independent object class detection using 3D Feature Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liebelt, J. ; IW-SI, EADS Innovation Works, Munich ; Schmid, C. ; Schertler, Klaus

This paper presents a 3D approach to multi-view object class detection. Most existing approaches recognize object classes for a particular viewpoint or combine classifiers for a few discrete views. We propose instead to build 3D representations of object classes which allow to handle viewpoint changes and intra-class variability. Our approach extracts a set of pose and class discriminant features from synthetic 3D object models using a filtering procedure, evaluates their suitability for matching to real image data and represents them by their appearance and 3D position. We term these representations 3D Feature Maps. For recognizing an object class in an image we match the synthetic descriptors to the real ones in a 3D voting scheme. Geometric coherence is reinforced by means of a robust pose estimation which yields a 3D bounding box in addition to the 2D localization. The precision of the 3D pose estimation is evaluated on a set of images of a calibrated scene. The 2D localization is evaluated on the PASCAL 2006 dataset for motorbikes and cars, showing that its performance can compete with state-of-the-art 2D object detectors.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008