By Topic

Privacy preserving crowd monitoring: Counting people without people models or tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Antoni B. Chan ; Electrical and Computer Engineering Department, University of California, San Diego, USA ; Zhang-Sheng John Liang ; Nuno Vasconcelos

We present a privacy-preserving system for estimating the size of inhomogeneous crowds, composed of pedestrians that travel in different directions, without using explicit object segmentation or tracking. First, the crowd is segmented into components of homogeneous motion, using the mixture of dynamic textures motion model. Second, a set of simple holistic features is extracted from each segmented region, and the correspondence between features and the number of people per segment is learned with Gaussian process regression. We validate both the crowd segmentation algorithm, and the crowd counting system, on a large pedestrian dataset (2000 frames of video, containing 49,885 total pedestrian instances). Finally, we present results of the system running on a full hour of video.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008