By Topic

Unsupervised modeling of object categories using link analysis techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gunhee Kim ; Sch. of Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA ; Faloutsos, C. ; Hebert, M.

We propose an approach for learning visual models of object categories in an unsupervised manner in which we first build a large-scale complex network which captures the interactions of all unit visual features across the entire training set and we infer information, such as which features are in which categories, directly from the graph by using link analysis techniques. The link analysis techniques are based on well-established graph mining techniques used in diverse applications such as WWW, bioinformatics, and social networks. The techniques operate directly on the patterns of connections between features in the graph rather than on statistical properties, e.g., from clustering in feature space. We argue that the resulting techniques are simpler, and we show that they perform similarly or better compared to state of the art techniques on common data sets. We also show results on more challenging data sets than those that have been used in prior work on unsupervised modeling.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008