Cart (Loading....) | Create Account
Close category search window
 

Motion segmentation via robust subspace separation in the presence of outlying, incomplete, or corrupted trajectories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rao, S.R. ; Coordinated Sci. Lab., Univ. of Illinois at Urbana-Champaign, Champaign, IL ; Tron, R. ; Vidal, R. ; Yi Ma

We examine the problem of segmenting tracked feature point trajectories of multiple moving objects in an image sequence. Using the affine camera model, this motion segmentation problem can be cast as the problem of segmenting samples drawn from a union of linear subspaces. Due to limitations of the tracker, occlusions and the presence of nonrigid objects in the scene, the obtained motion trajectories may contain grossly mistracked features, missing entries, or not correspond to any valid motion model. In this paper, we develop a robust subspace separation scheme that can deal with all of these practical issues in a unified framework. Our methods draw strong connections between lossy compression, rank minimization, and sparse representation. We test our methods extensively and compare their performance to several extant methods with experiments on the Hopkins 155 database. Our results are on par with state-of-the-art results, and in many cases exceed them. All MATLAB code and segmentation results are publicly available for peer evaluation at http://perception.csl.uiuc.edu/coding/motion/.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.