By Topic

Using contours to detect and localize junctions in natural images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Maire, M. ; California Univ., Berkeley, CA ; Arbelaez, P. ; Fowlkes, C. ; Malik, J.

Contours and junctions are important cues for perceptual organization and shape recognition. Detecting junctions locally has proved problematic because the image intensity surface is confusing in the neighborhood of a junction. Edge detectors also do not perform well near junctions. Current leading approaches to junction detection, such as the Harris operator, are based on 2D variation in the intensity signal. However, a drawback of this strategy is that it confuses textured regions with junctions. We believe that the right approach to junction detection should take advantage of the contours that are incident at a junction; contours themselves can be detected by processes that use more global approaches. In this paper, we develop a new high-performance contour detector using a combination of local and global cues. This contour detector provides the best performance to date (F=0.70) on the Berkeley Segmentation Dataset (BSDS) benchmark. From the resulting contours, we detect and localize candidate junctions, taking into account both contour salience and geometric configuration. We show that improvements in our contour model lead to better junctions. Our contour and junction detectors both provide state of the art performance.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008