By Topic

An efficient algorithm for compressed MR imaging using total variation and wavelets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Shiqian Ma ; Dept. of IEOR, Columbia Univ., New York, NY ; Wotao Yin ; Yin Zhang ; Chakraborty, A.

Compressed sensing, an emerging multidisciplinary field involving mathematics, probability, optimization, and signal processing, focuses on reconstructing an unknown signal from a very limited number of samples. Because information such as boundaries of organs is very sparse in most MR images, compressed sensing makes it possible to reconstruct the same MR image from a very limited set of measurements significantly reducing the MRI scan duration. In order to do that however, one has to solve the difficult problem of minimizing nonsmooth functions on large data sets. To handle this, we propose an efficient algorithm that jointly minimizes the lscr1 norm, total variation, and a least squares measure, one of the most powerful models for compressive MR imaging. Our algorithm is based upon an iterative operator-splitting framework. The calculations are accelerated by continuation and takes advantage of fast wavelet and Fourier transforms enabling our code to process MR images from actual real life applications. We show that faithful MR images can be reconstructed from a subset that represents a mere 20 percent of the complete set of measurements.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008