Cart (Loading....) | Create Account
Close category search window
 

Joint multi-label multi-instance learning for image classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

In real world, an image is usually associated with multiple labels which are characterized by different regions in the image. Thus image classification is naturally posed as both a multi-label learning and multi-instance learning problem. Different from existing research which has considered these two problems separately, we propose an integrated multi- label multi-instance learning (MLMIL) approach based on hidden conditional random fields (HCRFs), which simultaneously captures both the connections between semantic labels and regions, and the correlations among the labels in a single formulation. We apply this MLMIL framework to image classification and report superior performance compared to key existing approaches over the MSR Cambridge (MSRC) and Corel data sets.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.