Cart (Loading....) | Create Account
Close category search window
 

A hierarchical and contextual model for aerial image understanding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Porway, J. ; Univ. of California, Los Angeles, CA ; Wang, K. ; Yao, B. ; Song Chun Zhu

In this paper we present a novel method for parsing aerial images with a hierarchical and contextual model learned in a statistical framework. We learn hierarchies at the scene and object levels to handle the difficult task of representing scene elements at different scales and add contextual constraints to resolve ambiguities in the scene interpretation. This allows the model to rule out inconsistent detections, like cars on trees, and to verify low probability detections based on their local context, such as small cars in parking lots. We also present a two-step algorithm for parsing aerial images that first detects object-level elements like trees and parking lots using color histograms and bag-of-words models, and objects like roofs and roads using compositional boosting, a powerful method for finding image structures. We then activate the top-down scene model to prune false positives from the first stage. We learn this scene model in a minimax entropy framework and show unique samples from our prior model, which capture the layout of scene objects. We present experiments showing that hierarchical and contextual information greatly reduces the number of false positives in our results.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.