By Topic

Semantic-based indexing of fetal anatomies from 3-D ultrasound data using global/semi-local context and sequential sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Gustavo Carneiro ; Siemens Corporate Research, Integrated Data Systems Department, Princeton, NJ, USA ; Fernando Amat ; Bogdan Georgescu ; Sara Good
more authors

The use of 3-D ultrasound data has several advantages over 2-D ultrasound for fetal biometric measurements, such as considerable decrease in the examination time, possibility of post-exam data processing by experts and the ability to produce 2-D views of the fetal anatomies in orientations that cannot be seen in common 2-D ultrasound exams. However, the search for standardized planes and the precise localization of fetal anatomies in ultrasound volumes are hard and time consuming processes even for expert physicians and sonographers. The relative low resolution in ultrasound volumes, small size of fetus anatomies and inter-volume position, orientation and size variability make this localization problem even more challenging. In order to make the plane search and fetal anatomy localization problems completely automatic, we introduce a novel principled probabilistic model that combines discriminative and generative classifiers with contextual information and sequential sampling. We implement a system based on this model, where the user queries consist of semantic keywords that represent anatomical structures of interest. After queried, the system automatically displays standardized planes and produces biometric measurements of the fetal anatomies. Experimental results on a held-out test set show that the automatic measurements are within the inter-user variability of expert users. It resolves for position, orientation and size of three different anatomies in less than 10 seconds in a dual-core computer running at 1.7 GHz.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008