By Topic

Structure-perceptron learning of a hierarchical log-linear model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Long Zhu ; Department of Statistics University of California, Los Angeles, USA ; Yuanhao Chen ; Xingyao Ye ; Alan Yuille

In this paper, we address the problems of deformable object matching (alignment) and segmentation with cluttered background. We propose a novel hierarchical log-linear model (HLLM) which represents both shape and appearance features at multiple levels of a hierarchy. This model enables us to combine appearance cues at multiple scales directly into the hierarchy and to model shape deformations at short-range, medium range, and long-range. We introduce the structure-perceptron algorithm to estimate the parameters of the HLLM in a discriminative way. The learning is able to estimate the appearance and shape parameters simultaneously in a global manner. Moreover, the structure-perceptron learning has a feature selection aspect (similar to AdaBoost) which enables us to specify a class of appearance/shape features and allow the algorithm to select which features to use and weight their importance. This method was applied to the tasks of deformable object localization, segmentation, matching (alignment), and parsing. We demonstrate that the algorithm achieves the state of the art performance by evaluation on public dataset (horse and multi-view face).

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008