By Topic

Classifiability-based Optimal Discriminatory Projection Pursuit

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yu Su ; School of Computer Science and Technology, Harbin Institute of Technology, China ; Shiguang Shan ; Xilin Chen ; Wen Gao

Linear discriminant analysis (LDA) might be the most widely used linear feature extraction method in pattern recognition. Based on the analysis on the several limitations of traditional LDA, this paper makes an effort to propose a new computational paradigm named optimal discriminatory projection pursuit (ODPP), which is totally different from the traditional LDA and its variants. Only two simple steps are involved in the proposed ODPP: one is the construction of candidate projection set; the other is the optimal discriminatory projection pursuit. For the former step, candidate projections are generated as the difference vectors between nearest between-class boundary samples with redundancy well-controlled, while the latter is efficiently achieved by classifiability-based AdaBoost learning from the large candidate projection set. We show that the new ldquoprojection pursuitrdquo paradigm not only does not suffer from the limitations of the traditional LDA but also inherits good generalizability from the boundary attribute of candidate projections. Extensive experimental comparisons with LDA and its variants on synthetic and real data sets show that the proposed method consistently has better performances.

Published in:

Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on

Date of Conference:

23-28 June 2008