By Topic

An application of convex optimization concepts to approximate dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Arruda, E.F. ; Dept. of Syst. & Control, Nat. Lab. for Sci. Comput., Petropolis ; Fragoso, M.D. ; do Val, J.B.R.

This paper deals with approximate value iteration (AVI) algorithms applied to discounted dynamic (DP) programming problems. The so-called Bellman residual is shown to be convex in the Banach space of candidate solutions to the DP problem. This fact motivates the introduction of an AVI algorithm with local search that seeks an approximate solution in a lower dimensional space called approximation architecture. The optimality of a point in the approximation architecture is characterized by means of convex optimization concepts and necessary and sufficient conditions to global optimality are derived. To illustrate the method, two examples are presented which were previously explored in the literature.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008