By Topic

Design of delay-range-dependent state estimators for discrete-time recurrent neural networks with interval time-varying delay

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chien-Yu Lu ; Department of Industrial Education and Technology, National Changhua University of Education, 500, China ; Jui-Chuan Cheng ; Te-Jen Su

This paper performs a global stability analysis of a particular class of recurrent neural networks (RNN) with time-varying delay. Both Lipschitz continuous activation functions and monotone nondecreasing activation functions are considered. Globally delay-dependent robust stability criteria are derived in the form of linear matrix inequalities (LMI) through the use of Leibniz-Newton formula and relaxation matrices. Finally, two numerical examples are given to illustrate the effectiveness of the given criterion.

Published in:

2008 American Control Conference

Date of Conference:

11-13 June 2008