By Topic

Decentralized pole assignment for interconnected systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Javad Lavaei ; Department of Control and Dynamical Systems, California Institute of Technology, Pasadena, USA ; Amir G. Aghdam

Given a general proper interconnected system, this paper aims to design a LTI decentralized controller to place the modes of the closed-loop system at pre-determined locations. To this end, it is first assumed that the structural graph of the system is strongly connected. Then, it is shown applying generic static local controllers to any number of subsystems will not introduce new decentralized fixed modes (DFM) in the resultant system, although it has fewer input- output stations compared to the original system. This means that if there are some subsystems whose control costs are highly dependent on the complexity of the control law, then generic static controllers can be applied to such subsystems, without changing the characteristics of the system in terms of the fixed modes. As a direct application of this result, in the case when the system has no DFMs, one can apply generic static controllers to all but one subsystem, and the resultant system will be controllable and observable through that subsystem. Now, a simple observer-based local controller corresponding to this subsystem can be designed to displace the modes of the entire system arbitrarily. Similar results can also be attained for a system whose structural graph is not strongly connected. It is worth mentioning that similar concepts are deployed in the literature for the special case of strictly proper systems, but as noted in the relevant papers, extension of the results to general proper systems is not trivial. This demonstrates the significance of the present work.

Published in:

2008 American Control Conference

Date of Conference:

11-13 June 2008