By Topic

Remarks on computing the H2 norm of incompressible fluids using descriptor state-space formulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Moarref, R. ; Dept. of Electr. & Comput. Eng., Minnesota Univ., Minneapolis, MN ; Jovanović, M.R.

This paper utilizes descriptor state-space formulation for computation of energy amplification in incompressible channel flows. The dynamics of velocity and pressure fluctuations in these flows are described by a system of partial differential-algebraic equations. Typically, the evolution model is obtained by projecting the velocity fluctuations on a divergence-free subspace which eliminates pressure from the equations. This procedure results into a standard state-space representation and the problem of quantifying receptivity of velocity fluctuations to stochastic exogenous disturbances is solved using well-known H2 formalism. In this paper, however, it is shown how energy amplification can be computed directly from the original system of the linearized Navier-Stokes and continuity equations. This approach avoids the need for finding the evolution model which is advantageous in many applications.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008