By Topic

Identification of stable genetic networks using convex programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zavlanos, M.M. ; Dept. of Electr. & Syst. Eng., Univ. of Pennsylvania, Philadelphia, PA ; Julius, A.A. ; Boyd, S.P. ; Pappas, G.J.

Gene regulatory networks capture interactions between genes and other cell substances, resulting in various models for the fundamental biological process of transcription and translation. The expression levels of the genes are typically measured in mRNA concentrations in micro-array experiments. In a so called genetic perturbation experiment, small perturbations are applied to equilibrium states and the resulting changes in expression activity are measured. This paper develops a novel algorithm that identifies a sparse stable genetic network that explains noisy genetic perturbation experiments obtained at equilibrium. Our identification algorithm can also incorporate a variety of possible prior knowledge of the network structure, which can be either qualitative, specifying positive, negative or no interactions between genes, or quantitative, specifying a range of interaction strength. Our method is based on a convex programming relaxation for handling the sparsity constraint, and therefore is applicable to the identification of genome-scale genetic networks.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008