By Topic

Stability analysis of nonlinear quadratic systems via polyhedral Lyapunov functions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Amato, F. ; Sch. of Comput. Sci. & Biomed. Eng., Univ. degli Studi Magna Gratia di Catanzaro, Catanzaro ; Calabrese, F. ; Cosentino, C. ; Merola, A.

Quadratic systems play an important role in the modeling of a wide class of nonlinear processes (electrical, robotic, biological, etc.). For such systems it is of mandatory importance not only to determine whether the origin of the state space is locally asymptotically stable, but also to ensure that the operative range is included into the convergence region of the equilibrium. Based on this observation, this paper considers the following problem: given the zero equilibrium point of a nonlinear quadratic system, assumed to be locally asymptotically stable, and a certain polytope in the state space containing the origin, determine whether this polytope belongs to the region of attraction of the equilibrium. The proposed approach is based on polyhedral Lyapunov functions, rather than on the classical quadratic Lyapunov functions. An example shows that our methodology may return less conservative results than those obtainable with previous approaches.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008