By Topic

Robust output feedback model predictive control for linear systems via moving horizon estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sui, D. ; Dept. of Eng. Cybern., Norwegian Univ. of Sci. & Technol., Trondheim ; Feng, L. ; Hovd, M.

This paper provides a simple approach to the problem of robust output feedback model predictive control (MPC) for linear systems with state and input constraints, subject to bounded state disturbances and output measurement errors. The problem of estimating the state is addressed by using moving horizon estimation (MHE). For such an MHE estimator, it is shown that the state estimation error converges and stays in some set, which is taken into account in the design of the output feedback MPC controllers. In the MPC formulation where the nominal system is considered, the constraints are tightened in a monotonic sequence such that satisfaction of the input and state constraints is guaranteed. Robust stability of an invariant set for the closed-loop original system is ensured. The performance of the approach is assessed via a numerical example.

Published in:

American Control Conference, 2008

Date of Conference:

11-13 June 2008