By Topic

Wavelet Feature Selection for Image Classification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)

Energy distribution over wavelet subbands is a widely used feature for wavelet packet based texture classification. Due to the overcomplete nature of the wavelet packet decomposition, feature selection is usually applied for a better classification accuracy and a compact feature representation. The majority of wavelet feature selection algorithms conduct feature selection based on the evaluation of each subband separately, which implicitly assumes that the wavelet features from different subbands are independent. In this paper, the dependence between features from different subbands is investigated theoretically and simulated for a given image model. Based on the analysis and simulation, a wavelet feature selection algorithm based on statistical dependence is proposed. This algorithm is further improved by combining the dependence between wavelet feature and the evaluation of individual feature component. Experimental results show the effectiveness of the proposed algorithms in incorporating dependence into wavelet feature selection.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 9 )