By Topic

Impact of Donor Concentration, Electric Field, and Temperature Effects on the Leakage Current in Germanium p +/ n Junctions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

14 Author(s)
Eneman, G. ; Interuniversity Microelectron. Center, Leuven ; Wiot, M. ; Brugere,, Antoine ; Casain, O.S.I.
more authors

This paper presents an analysis of junction leakage in heavily doped p+/n germanium junctions, targeted for short-channel transistor fabrication. There exists an optimal p+/n junction condition, with a doping concentration of 1 times 1017-5 times 1017 cm-3, where the area-leakage-current density is minimal. Use of a halo-implant condition optimized for our 125-nm gate-length pMOS devices shows less than one decade higher area leakage than the optimal p+/n junction. For even higher doping levels, the leakage density increases strongly. Therefore, careful optimization of p+/n junctions is needed for decananometer germanium transistors. The junction leakage shows good agreement with electrical simulations, although for some implant conditions, more adequate implant models are required. Finally, it is shown that the area-junction static-power consumption for the best junctions remains below the power-density specifications for high-performance applications.

Published in:

Electron Devices, IEEE Transactions on  (Volume:55 ,  Issue: 9 )