By Topic

High-Precision Boundary Length Estimation by Utilizing Gray-Level Information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sladoje, N. ; Fac. of Eng., Univ. of Novi Sad, Novi Sad ; Lindblad, J.

We present a novel method that provides an accurate and precise estimate of the length of the boundary (perimeter) of an object by taking into account gray levels on the boundary of the digitization of the same object. Assuming a model where pixel intensity is proportional to the coverage of a pixel, we show that the presented method provides error-free measurements of the length of straight boundary segments in the case of nonquantized pixel values. For a more realistic situation, where pixel values are quantized, we derive optimal estimates that minimize the maximal estimation error. We show that the estimate converges toward a correct value as the number of gray levels tends toward infinity. The method is easy to implement; we provide the complete pseudocode. Since the method utilizes only a small neighborhood, it is very easy to parallelize. We evaluate the estimator on a set of concave and convex shapes with known perimeters, digitized at increasing resolution. In addition, we provide an example of applicability of the method on real images, by suggesting appropriate preprocessing steps and presenting results of a comparison of the suggested method with other local approaches.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:31 ,  Issue: 2 )