Cart (Loading....) | Create Account
Close category search window

Using stochastic approximation to design OSPF routing areas that satisfy multiple and diverse end-to-end performance requirements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Manousakis, K. ; Appl. Res., Telcordia Technol., Piscataway, NJ ; McAuley, A.J.

Dividing an open shortest path first (OSPF) autonomous system (AS) into independent routing areas allows area topology abstraction, reducing route overhead, table size, and convergence time, while providing some isolation from bad routing data. On the contrary, areas reduce connectivity, while increasing configuration complexity, routing path length, and traffic concentration. The formation of performance efficient OSPF areas subject to multiple requirements is known to be NP-complete problem; however, some simple heuristics have been used to optimize for particular routing metrics. For example, a min-cut can be used to ensure balanced number of nodes per area. However, no existing tools can optimize for actual end-to- end performance requirements or take into account the characteristics of network topology. This paper describes a fast and flexible optimization tool that automates the design of open shortest path first (OSPF) routing areas to meet heterogeneous end-to-end performance requirements. The tool is based on an enhanced version of simulated annealing (SA) algorithm, which is a general stochastic approximation method capable of handling multiple, diverse and conflicting requirements (multi-objective optimization). The simulated annealing based tool can provide from highly optimized solutions for network planners designing conventional wired OSPF networks with known application flows to scalability and robust solutions in wireless networks using MANET OSPF extensions with changing application needs. This paper formulates the OSPF areas design as a weighted-sum multi-objective optimization of routing metrics to maximize user capacity, while minimizing the increased delay and lost connectivity. For diverse topologies, we show significantly reduced user delay (over 25%) and increased available bandwidth (by over 400%). Further, we show that by simply adjusting the weights, the tool can prioritize the performance requirements and adapt to heterogeneous network e- - nvironments.

Published in:

Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks and Workshops, 2008. WiOPT 2008. 6th International Symposium on

Date of Conference:

1-3 April 2008

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.