Cart (Loading....) | Create Account
Close category search window
 

A 0.7V single-supply SRAM with 0.495um2 cell in 65nm technology utilizing self-write-back sense amplifier and cascaded bit line scheme

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)

A novel SRAM architecture with a high density cell in low supply voltage operation is proposed. A self-write-back sense amplifier realizes cell failure rate improvement by more than two orders of magnitude at 0.6 V. A cascaded bit line scheme saves additional process cost for hierarchical bit line layer. A test chip with 256 kb SRAM utilizing 0.495 um2 cell in 65 nm CMOS technology demonstrated 0.7 V single supply operation.

Published in:

VLSI Circuits, 2008 IEEE Symposium on

Date of Conference:

18-20 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.