By Topic

Nanostructure control of carbon aerogels and the application in lithium ion cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

12 Author(s)
Shen Jun ; Pohl Inst. of Solid State Phys., Tongji Univ., Shanghai ; Han Weina ; Mi Yijie ; On Yangling
more authors

Carbon aerogels are derived via a sol-gel process with resorcinol and formodehyde and subsequent pyrolysis of the precursor (RF) aerogels. Due to their high surface area, electrically conducting network and chemical inertness, carbon aerogels can be considered ideal electrodes in rechargeable batteries. In this paper the optimization of the preparation and structure controlling of carbon aerogels are studied. The influence of preparation conditions on the structural properties of carbon aerogels are investigated by scanning electron microscopy, nitrogen adsorption and X-ray diffraction measurements. Carbon electrodes are prepared using carbon aerogels powders and binder, with the carbon aerogel electrode as the anode and with lithium metal foil as the cathode, cells are made. Electrochemical measurements of the lithium intercalation properties for carbon aerogels are performed under high-purity argon in a glove box. The model cells show that the capacity for the first cycle and the rechargeable capacity are all very high, but the ratio of the rechargeable capacity to the total capacity (first cycle) is about 0.3 to 0.4.

Published in:

Nanoelectronics Conference, 2008. INEC 2008. 2nd IEEE International

Date of Conference:

24-27 March 2008