Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Progressive Parametric Query Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bizarro, P. ; CISUC/DEI, Univ. of Coimbra, Coimbra ; Bruno, N. ; DeWitt, D.J.

Commercial applications usually rely on pre-compiled parameterized procedures to interact with a database. Unfortunately, executing a procedure with a set of parameters different from those used at compilation time may be arbitrarily sub-optimal. Parametric query optimization (PQO) attempts to solve this problem by exhaustively determining the optimal plans at each point of the parameter space at compile time. However, PQO is likely not cost-effective if the query is executed infrequently or if it is executed with values only within a subset of the parameter space. In this paper we propose instead to progressively explore the parameter space and build a parametric plan during several executions of the same query. We introduce algorithms that, as parametric plans are populated, are able to frequently bypass the optimizer but still execute optimal or near-optimal plans.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:21 ,  Issue: 4 )