By Topic

Low-Complexity Block Turbo Equalization for OFDM Systems in Time-Varying Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kun Fang ; Fac. of Electr. Eng., Math. & Comput. Sci. (EEMCS),, Delft Univ. of Technol., Delft ; Luca Rugini ; Geert Leus

We propose low-complexity block turbo equalizers for orthogonal frequency-division multiplexing (OFDM) systems in time-varying channels. The presented work is based on a soft minimum mean-squared error (MMSE) block linear equalizer (BLE) that exploits the banded structure of the frequency-domain channel matrix, as well as a receiver window that enforces this banded structure. This equalization approach allows us to implement the proposed designs with a complexity that is only linear in the number of subcarriers. Three block turbo equalizers are discussed: two are based on a biased MMSE criterion, while the third is based on the unbiased MMSE criterion. Simulation results show that the proposed iterative MMSE BLE achieves a better bit error rate (BER) performance than a previously proposed iterative MMSE serial linear equalizer (SLE). The proposed equalization algorithms are also tested in the presence of channel estimation errors.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 11 )