By Topic

Design of Near-Allpass Strictly Stable Minimal-Phase Real-Valued Rational IIR Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Yuk-Fan Ho, C. ; Dept. of Electron. Eng., Univ. of London, London ; Wing-Kuen Ling, B. ; Zhi-Wei Chi ; Shikh-Bahaei, M.
more authors

In this brief, a near-allpass strictly stable minimal-phase real-valued rational infinite-impulse response filter is designed so that the maximum absolute phase error is minimized subject to a specification on the maximum absolute allpass error. This problem is actually a minimax nonsmooth optimization problem subject to both linear and quadratic functional inequality constraints. To solve this problem, the nonsmooth cost function is first approximated by a smooth function, and then our previous proposed method is employed for solving the problem. Computer numerical simulation result shows that the designed filter satisfies all functional inequality constraints and achieves a small maximum absolute phase error.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:55 ,  Issue: 8 )