By Topic

An Efficient Approach to Onboard Stereo Vision System Pose Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Angel Domingo Sappa ; Comput. Vision Center, Univ. Autonoma de Barcelona, Barcelona ; Fadi Dornaika ; Daniel Ponsa ; David Geronimo
more authors

This paper presents an efficient technique for estimating the pose of an onboard stereo vision system relative to the environment's dominant surface area, which is supposed to be the road surface. Unlike previous approaches, it can be used either for urban or highway scenarios since it is not based on a specific visual traffic feature extraction but on 3D raw data points. The whole process is performed in the Euclidean space and consists of two stages. Initially, a compact 2D representation of the original 3D data points is computed. Then, a RANdom SAmple Consensus (RANSAC) based least-squares approach is used to fit a plane to the road. Fast RANSAC fitting is obtained by selecting points according to a probability function that takes into account the density of points at a given depth. Finally, stereo camera height and pitch angle are computed related to the fitted road plane. The proposed technique is intended to be used in driver-assistance systems for applications such as vehicle or pedestrian detection. Experimental results on urban environments, which are the most challenging scenarios (i.e., flat/uphill/downhill driving, speed bumps, and car's accelerations), are presented. These results are validated with manually annotated ground truth. Additionally, comparisons with previous works are presented to show the improvements in the central processing unit processing time, as well as in the accuracy of the obtained results.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:9 ,  Issue: 3 )