By Topic

An energy efficient framework using non-volatile flash memory for networked storage systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nijim, M. ; Computer Science, School of Computing, The University of Southern Mississippi, Hattiesburg, 39406, USA ; Aabukmail, Ahmed ; Ali, Adel

In the past decade parallel disk systems have been highly scalable and able to alleviate the problem of disk I/O bottleneck, thereby being widely used to support a wide range of data- intensive applications. Optimizing energy consumption in parallel disk systems has strong impacts on the cost of backup power-generation and cooling equipment, because a significant fraction of the operation cost of data centres is due to energy consumption and cooling. Although a variety of parallel disk systems were developed to achieve high performance and energy efficiency, most existing parallel disk systems lack an adaptive way to conserve energy in dynamically changing workload conditions. To remedy this deficiency, we proposed an energy efficient framework. In the framework, we developed an adaptive energy conservation mechanism that makes use of the Dynamic Voltage Scaling Mechanism to conserve energy in parallel disk systems without sacrificing performance. The framework leverages the adaptor to dynamically choose the most appropriate voltage supplies for parallel disks while guaranteeing specified performance for example disk request’s desired response time. We conduct extensive experiments to quantitatively evaluate the performance of the proposed framework. To validate our framework, we developed an energy aware algorithm that integrates DVS with flash (DCAPS for short).

Published in:

Information Reuse and Integration, 2008. IRI 2008. IEEE International Conference on

Date of Conference:

13-15 July 2008