By Topic

Automatic product feature extraction from online product reviews using maximum entropy with lexical and syntactic features

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gamgarn Somprasertsri ; Faculty of Information Technology, King Mongkut¿s Institute of Technology Ladkrabang, Bangkok, Thailand ; Pattarachai Lalitrojwong

The task of product feature extraction is to find product features that customers refer to their topic reviews. It would be useful to characterize the opinions about the products. We propose an approach for product feature extraction by combining lexical and syntactic features with a maximum entropy model. For the underlying principle of maximum entropy, it prefers the uniform distributions if there is no external knowledge. Using a maximum entropy approach, firstly we extract the learning features from the annotated corpus, secondly we train the maximum entropy model, thirdly we use trained model to extract product features, and finally we apply a natural language processing technique in postprocessing step to discover the remaining product features. Our experimental results show that this approach is suitable for automatic product feature extraction.

Published in:

Information Reuse and Integration, 2008. IRI 2008. IEEE International Conference on

Date of Conference:

13-15 July 2008