By Topic

Compound record clustering algorithm for design pattern detection by decision tree learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jing Dong ; Computer Science Department, University of Texas at Dallas, Richardson, 75083, USA ; Yongtao Sun ; Yajing Zhao

Recovering design patterns applied in a system can help refactoring the system. Machine learning algorithms have been successfully applied in mining data patterns. However, one of the main obstacles of applying them for design pattern detection is the difficulty of collecting training examples. Unlike other applications, a design pattern instance typically includes a group of classes with certain relationships. Thus, the possible combinations of the group of classes can be enormous which results in huge training sets making the application of machine learning algorithms impracticable. In this paper, we propose an innovative method using matrix transformations to cluster the training examples. Our method can significantly reduce the size of training examples, thus making it possible to be efficiently applied in machine learning algorithm.

Published in:

Information Reuse and Integration, 2008. IRI 2008. IEEE International Conference on

Date of Conference:

13-15 July 2008