Cart (Loading....) | Create Account
Close category search window
 

Decentralized controllers design for nonlinear uncertain systems with application on robotic systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ishak, H. ; Fac. of Electr. & Electron. Eng., Univ. Malaysia Pahang, Kuantan ; Osman, J.H.S.

This paper presents investigation into the development of decentralized sliding mode control with application to trajectory tracking for hydraulically driven revolute robot manipulators. The control of hydraulically actuated robot manipulator is very challenging due to the highly nonlinearities in its dynamics, uncertainties parameters, and variations on payload. To overcome these problems, an integrated mathematical model of an N degree-of-freedom (dof) hydraulic robot manipulator is treated as a large-scale uncertain system models with bounded uncertainties where the bounds are known. This is then decomposed into interconnected uncertain subsystems in order to apply the decentralized tracking control strategy. Sliding mode control (SMC) and proportional-integral sliding mode control strategies will be utilized to overcome the inherent nonlinear dynamics under the decentralized frameworks. These approaches were adopted to ensure the stability of the system dynamics during the sliding mode and the insensitivity to the parameter variations and disturbances. The performance and robustness of the controllers were evaluated on a 3 dof hydraulically actuated manipulator through computer simulation. The results prove that the controllers have succeeded in forcing the 3 DOF hydraulic robot manipulators to track the predefined desired trajectory at all time.

Published in:

Industrial Electronics and Applications, 2008. ICIEA 2008. 3rd IEEE Conference on

Date of Conference:

3-5 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.