By Topic

Quantum Dots-in-a-Well Focal Plane Arrays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

10 Author(s)
Vandervelde, T.E. ; Center for High Technol. Mater., Univ. of New Mexico, Albuquerque, NM ; Lenz, M.C. ; Varley, E. ; Barve, A.
more authors

In this paper, the basics and some of the recent developments in quantum dots-in-a-well (DWELL) focal plane arrays (FPAs) are reviewed. Fundamentally, these detectors represent a hybrid between a conventional quantum well infrared photodetector (QWIP) and a quantum dot infrared photodetector (QDIP), in which the active region consists of quantum dots (QDs) embedded in a quantum well (QW). This hybridization grants DWELLs many of the advantages of its components. These advantages include normally incident photon sensitivity without gratings or optocoupers, like QDIPs, and reproducible control over operating wavelength through ldquodial-in recipesrdquo as seen in QWIPs. Recently reported high-temperature operation results for DWELL FPAs now back up the conclusions drawn by the long carrier lifetimes observed in DWELL heterostructures using femtosecond spectroscopy. This paper will conclude with a preview of some upcoming advances in the field of DWELL FPAs.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 4 )