By Topic

Manufacturable Photonic Crystal Single-Mode and Fluidic Vertical-Cavity Surface-Emitting Lasers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Kasten, A.M. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana- Champaign (UIUC), Urbana, IL ; Sulkin, Joshua D. ; Leisher, P.O. ; McElfresh, D.K.
more authors

We describe a robust manufacturing process for single-mode photonic crystal (PhC) vertical-cavity surface-emitting lasers (VCSELs). Various PhC designs are investigated to determine endlessly single-mode designs, whereby the same PhC design yields single-mode operation for three different wavelengths (780, 850, and 980 nm). The fabrication of the PhC pattern is based on a self-aligned optical lithography process. The fabrication process results in VCSELs with a maximum output power greater than 1 mW under continuous-wave (CW) operation with side-mode suppression ratio greater than 35 dB. We also show microfluidic laser structures that are enabled by our fabrication process, which integrate fluid channels into VCSELs. Optical and electrical properties of these microfluidic VCSELs are investigated with and without fluids present under CW and pulsed operation. A shift of the lasing wavelength is found with fluid insertion.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 4 )