By Topic

Optical and Electrical Characteristics of ZnO Films Grown on Nitridated Si (1 0 0) Substrate with GaN and ZnO Double Buffer Layers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
S. P. Chang ; Dept. of Electr. Eng., Nat. Cheng Kung Univ., Tainan ; R. W. Chuang ; S. J. Chang ; Y. Z. Chiou
more authors

The optical and electrical characteristics of zinc oxide (ZnO) films grown by molecular-beam epitaxy (MBE) on Si substrates were investigated. ZnO epitaxial layer was successfully grown on nitridated Si(100) substrate initially covered with high-temperature GaN and low-temperature ZnO double buffer layers using MBE. X-ray diffraction and photoluminescence results both indicated that a reasonable quality of ZnO epitaxial layer was obtained. As the CV measurement had indicated, the carrier concentration was reduced virtually in a linear fashion from ZnO surface down to GaN buffer layer. A reduction in electron concentration was caused by the carrier depletion due to the presence of the Schottky barrier of Ni/ZnO. The large density of electron accumulated at the ZnO/GaN interface was due to the large conduction band discontinuity and offset.

Published in:

IEEE Journal of Selected Topics in Quantum Electronics  (Volume:14 ,  Issue: 4 )