By Topic

Input current-ripple reduction method on a novel pulse-link DC-AC converter for fuel cells applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

This paper proposes a novel DC-AC converter topology for fuel cells applications, and mentions the reduction methods of input current-ripple. Fuel cells are generated electricity by chemical reaction. Chemical reaction time is much slower than commercial frequency. So, input current-ripple may damage the fuel consumption and life span. The conventional DC-AC converter for fuel cells has large capacitor between boost converter stage and PWM inverter stage, in order to reduce the input current-ripple. That capacitor prevent from reducing the size of its unit. The proposed DC-AC converter, called pulse-link DCAC converter provides boosted-voltage pulse directly to PWM inverter. This topology is no need to insert large capacitor. Furthermore, the series LC circuit which is inserted on proposed topology works as ripple canceling. This paper shows the mechanism of current-ripple reduction. Moreover, active input current-ripple reduction method is shown.

Published in:

Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on

Date of Conference:

11-13 June 2008