Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Design and optimization of integrated low-voltage low-power monolithic CMOS charge pumps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ling Su ; Integrated Syst. Design Lab., Univ. of Arizona, Tucson, AZ ; Dongsheng Ma

Driven by the proliferation of implantable and self-powered electronic devices, low-voltage, low-power, high-efficiency DC-DC power converters are on high demands. This paper first reviews the state-of-the-arts charge pumps, with focus on power loss minimization, power stage architectures and control signaling. A new four-phase complimentary charge pump is then proposed. By employing the techniques of minimizing the reversion loss and conduction loss and interleaving the power stage sub-cells, the design achieves high efficiency and low ripple voltages without compromising fabrication cost. A sub-threshold clock generator is employed to further reduce the power loss in the controller. The charge pump was designed with IBM 180 nm CMOS process with fully on-chip pumping capacitors. HSPICE simulations show that the charge pump maintains the efficiency above 90% within up to 5 mW power range, with the maximum efficiency of 92.01%. The ripple voltage is also much improved in comparison with its counterparts.

Published in:

Power Electronics, Electrical Drives, Automation and Motion, 2008. SPEEDAM 2008. International Symposium on

Date of Conference:

11-13 June 2008