By Topic

Liquid Aspiration and Dispensing Based on an Expanding PDMS Composite

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
BjÖrn Samel ; Angstrom Aerosp. Corp., Uppsala ; Niklas Sandstrom ; Patrick Griss ; GÖran Stemme

In this paper, we present the development of active liquid aspiration and dispensing units designed for vertical, as well as lateral, liquid aspiration. The devices are based on a single-use thermally expanding polydimethylsiloxane (PDMS) composite, which allows altering its surface topography by means of individually addressable integrated heaters. Devices are designed in order to create an enclosed cavity in the system, due to locally expanding the initially unstructured composite. This enables negative volume displacement and leads to the event of liquid aspiration. To enable this device functionality, two different techniques of selectively creating permanent PDMS bonds have been developed. One approach utilizes the plasma-assisted PDMS bonding technique, together with a patterned antistiction layer to form reversibly, as well as irreversibly, bonded regions. Another approach utilizes microcontact printing of PDMS curing agent, which serves as a patterned intermediate layer for adhesive bonding. Fabricated prototype devices successfully demonstrated the aspiration and release of liquid volumes ranging from 28 to 815 nL. The devices are entirely fabricated from low-cost materials, using wafer-level processes only and do not require external means for liquid actuation.

Published in:

Journal of Microelectromechanical Systems  (Volume:17 ,  Issue: 5 )