By Topic

Texture and Wavelet-Based Spoof Fingerprint Detection for Fingerprint Biometric Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nikam, S.B. ; Dept. of Comput. Sci. & Eng., Motilal Nehru Nat. Inst. of Tech., Allahabad ; Agarwal, S.

This paper describes an image-based system to detect spoof fingerprint attacks in fingerprint biometric systems. It is based on the observation that, real and spoof fingerprints exhibit different textural characteristics. These are based on structural, orientation, roughness, smoothness and regularity differences of diverse regions in a fingerprint image. Local binary pattern (LBP) histograms are used to capture these textural details. Wavelet energy features characterizing ridge frequency and orientation information are also used for improving the efficiency of the proposed method. Dimensionality of the integrated feature set is reduced by running Pudilpsilas Sequential Forward Floating Selection (SFFS) algorithm. We propose to use a hybrid classifier, formed by fusing three classifiers: neural network, support vector machine and k-nearest neighbor using the ldquoProduct Rulerdquo. Classification rates achieved with these classifiers, including a hybrid classifier are in the range ~94% to ~97%. Experimental results indicate that, the new liveness detection approach is a very promising technique, as it needs only one fingerprint and no extra hardware to detect vitality.

Published in:

Emerging Trends in Engineering and Technology, 2008. ICETET '08. First International Conference on

Date of Conference:

16-18 July 2008