By Topic

Blind Identification of Source Cell-Phone Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Celiktutan, O. ; Dept. of Electr.-Electron. Eng., Bogazici Univ., Istanbul ; Sankur, B. ; Avcibas, I.

The various image-processing stages in a digital camera pipeline leave telltale footprints, which can be exploited as forensic signatures. These footprints consist of pixel defects, of unevenness of the responses in the charge-coupled device sensor, black current noise, and may originate from proprietary interpolation algorithms involved in color filter array. Various imaging device (camera, scanner, etc.) identification methods are based on the analysis of these artifacts. In this paper, we set to explore three sets of forensic features, namely binary similarity measures, image-quality measures, and higher order wavelet statistics in conjunction with SVM classifiers to identify the originating camera. We demonstrate that our camera model identification algorithm achieves more accurate identification, and that it can be made robust to a host of image manipulations. The algorithm has the potential to discriminate camera units within the same model.

Published in:

Information Forensics and Security, IEEE Transactions on  (Volume:3 ,  Issue: 3 )